Микроскоп конфокальный FV1200, лазерный сканирующий, Olympus
Вопросы о наличии, цене, фасовке и характеристиках
принимаем ТОЛЬКО по почте info@npfatlas.ru
Работаем только с юр. лицами и ИП. Заявки на info@npfatlas.ru
Контакты
Микроскоп конфокальный FV1200, лазерный сканирующий, Olympus

Микроскоп конфокальный FV1200, лазерный сканирующий, Olympus

картинка Микроскоп конфокальный FV1200, лазерный сканирующий, Olympus
0 руб.
Производитель
Olympus

Цена 0 руб. за 1 шт

Количество
Заказать
  • Полное описание

Конфокальная лазерная сканирующая система нового поколения. Позволяет исследовать как живые, так и фиксированные клетки, ткани и целые организмы в шести измерениях. При работе с живыми образцами система сводит к минимуму фототоксичность и фотообесцвечивание образца и предоставляет возможность получения максимальной информации об объекте.

Может комплектоваться 2 лазерными сканерами для одновременного осуществления конфокального, флуоресцентного наблюдения и независимого сканирования вторым лазером для реализации FRAP, FLIP, фотоактивации, фотоконверсии, лазерного удаления и др.

Система спектральнои? детекции осуществляется на 3 или 5 спектральных каналах. Возможность подключения специального высокочувствительного детектора GaAsP PMT, с увеличением квантовои? эффективности на 45%.

Совместимость с моторизованным столиком позволяет использовать FV1200 как инструмент для создания многомерных сканов по 4 координатам: XYZT.




Развитие генной инженерии, протеомики, биотехнологии, современной фармацевтики и биомедицины способствовало быстрому внедрению новых методов конфокальной микроскопии, и в настоящее время они широко используются в клеточной биологии.

Конфокальную флуоресцентную микроскопию можно рассматривать как разновидность традиционной флуоресцентной микроскопии, которая позволяет исследовать внутреннюю микроструктуру клеток, причем не только фиксированных, но и живых, идентифицировать микроорганизмы, структуры клетки и отдельные молекулы, наблюдать динамические процессы в клетках. Конфокальная флуоресцентная микроскопия в дополнение к этому обеспечила возможность трехмерного субмикронного разрешения объекта и существенно расширила возможность неразрушающего анализа прозрачных образцов. Повышение разрешающей способности достигается благодаря использованию в конфокальных микроскопах лазеров в качестве источников света и конфокальной диафрагмы для фильтрации внефокусной флуоресценции. Преимущество лазеров по сравнению с ртутными или ксеноновыми лампами заключается в монохроматичности и высокой параллельности испускаемого пучка света. Эти свойства лазерного излучения обеспечивают более эффективную работу оптической системы микроскопа, уменьшают число бликов, улучшают точность фокусировки пучка света. На образце лазер освещает не все поле зрения, как в ламповом флуоресцентном микроскопе, а фокусируется в точку. Конечно, при этом лазерный луч возбуждает флуоресценцию как в точке фокуса, так и во всех слоях образца, через которые проходит. И если эта внефокусная флуоресценция, излучаемая слоями, расположенными выше и ниже фокальной плоскости, регистрируется вместе с основным сигналом из фокуса объектива, это ухудшает разрешение оптической системы. Избавиться от внефокусной флуоресценции позволяет конфокальная диафрагма. Изменяя диаметр конфокальной диафрагмы, можно определять толщину оптического слоя вблизи фокуса лазерного луча, поэтому флуоресценция, испускаемая выше и ниже фокуса, оказывается дефокусированной на конфокальной диафрагме и не регистрируется. Благодаря этому конфокальная микроскопия обеспечивает улучшенное разрешение, в первую очередь вдоль оси Z.

Современная конфокальная микроскопия позволяет решать три основные задачи: изучение тонкой структуры клетки, колоколизации (пространственного взаиморасположения) в клетке двух или более веществ, а так же исследование динамических процессов, протекающих в живых клетках.

Благодаря улучшенному разрешению, особенно повышенному разрешению по оси Z, и возможности создавать серии «оптических» срезов, конфокальный микроскоп позволяет исследовать тонкую структуру объекта в трехмерном пространстве. Специальные программы позволяют создать из серии оптических срезов объемное изображение объекта (3D) и как бы рассматривать его под разными углами зрения, что может дать ценную информацию о форме клеток, цитоскелете, структуре ядра, хромосомах и даже локализации в них отдельных генов, а так же о взаиморасположении этих элементов.

Использование мультиспектрального (с несколькими флуорохромами) режима работы лазерного сканирующего конфокального микроскопа позволяет исследовать колоколизацию (пространственное взаиморасположение) в клетке двух или более разных веществ, например, белков, помеченных разными флуоресцентными красителями. Исследуя такие препараты в обычном флуоресцентном микроскопе, нельзя с уверенностью утверждать, находятся эти вещества рядом или одно под другим. С помощью метода оптических срезов и дальнейшей 3D-реконструкции объекта можно воссоздать объемное распределение веществ. Мультиспектральный режим так же позволяет проводить на конфокальном микроскопе исследования методом FISH.

Возможность получать временные серии изображений с высоким пространственным разрешением позволяет исследовать изменения, происходящие в клетках и их структурах во времени (4D реконструкция). Кроме того, благодаря наличию лазеров и системы сканирования можно осуществлять не только регистрацию временных изменений, но и осуществлять воздействие на клеточные структуры лазерным излучением с одновременным наблюдением протекающих процессов.

Новые методы лазерной сканирующей конфокальной микроскопии получили широкое распространение в фундаментальных науках, а также все шире применяются в практических исследованиях и диагностической медицине.

Методы конфокальной микроскопии позволяют выявить способность веществ накапливаться в цитоплазме, ядре или других структурах клетки, зарегистрировать образование метаболитов, измерить кинетику накопления и метаболизма веществ в клетке, скорость выведения веществ из клетки, сравнить интенсивность метаболизма в различных клеточных линиях и в различных условиях. Эти методы все шире применяются в исследованиях механизмов действия как канцерогенов, так и лекарственных препаратов и противоопухолевых соединений, позволяют рассчитывать их эффективные концентрации.

Анализ интенсивности и формы спектров собственной флуоресценции позволяет распознавать нормальные и воспаленные клетки, и такой метод, в частности, предложен в качестве нового способа ранней диагностики шейки матки.

Подобрав комбинацию фильтров для нескольких типов собственной флуоресценции, возможно без проведения гистохимического окрашивания и трудоемкого получения и исследования множества срезов различать злокачественные и нормальные тканевые структуры в биопсийных пробах лимфоузлов пациентов с лимфоаденопатией различного происхождения.

Методы конфокальной микроскопии широко применяются в эмбриологии и гидробиологии, ботанике, зоологии при изучении структуры гамет, развития и формирования организмов.

Конфокальная микроскопия постоянно развивается, и в практику внедряются все новые методы исследований для изучения механизмов функционирования организмов на клеточном, субклеточном и молекулярном уровнях, которые с каждым днем становятся все более востребованными в прикладных исследованиях и диагностике. Появление персонального конфокального лазерного сканирующего микроскопа FV10i позволяет расширить границы применения конфокальных методик. Микроскоп FV10i выполняет те же функции, что и высокотехнологичные исследовательские конфокальные сканирующие системы FV1000. В компактный корпус интегрированы все основные компоненты: 4 диодных лазера, спектральный сканирующий детектор, интуитивно понятное программное обеспечение, инкубатор, моторизованный столик, антивибрационная платформа и даже «темная комната». Этот микроскоп идеален для тех, кто только начинает работать с конфокальным методиками, для тех, кто хотел бы освободить исследовательские конфокальные микроскопы от рутинных задач, для диагностических лабораторий, лабораторий с ограниченным бюджетом, для обучающих задач и случаев проведения исследований в условиях ограниченного комфорта, например, на биологических станциях.